Quantcast
Channel: Journal of Generalized Lie Theory and Applications Articles (Project Euclid)
Viewing all articles
Browse latest Browse all 93

A∞-Algebras Derived from Associative Algebras with a Non-Derivation Differential

$
0
0
Kaj Borjeson.

Source: Journal of Generalized Lie Theory and Applications, Volume 9, Number 1, 5 pages.

Abstract:
Given an associative graded algebra equipped with a degree $+1$ differential Δ we define an $A_\infty$-structure that measures the failure of Δ to be a derivation. This can be seen as a non-commutative analog of generalized BValgebras. In that spirit we introduce a notion of associative order for the operator Δ and prove that it satisfies properties similar to the commutative case. In particular when it has associative order 2 the new product is a strictly associative product of degree +1 and there is compatibility between the products, similar to ordinary BV-algebras. We consider several examples of structures obtained in this way. In particular we obtain an $A_\infty$-structure on the bar complex of an $A_\infty$-algebra that is strictly associative if the original algebra is strictly associative. We also introduce strictly associative degree $+1$ products for any degree $+1$ action on a graded algebra. Moreover, an $A_\infty$-structure is constructed on the Hochschild cocomplex of an associative algebra with a non-degenerate inner product by using Connes’ B-operator.


Viewing all articles
Browse latest Browse all 93

Trending Articles